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Introduction

Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the surface tension and the contact (wetting) angle with a crucible,
since they determine meniscus shapes in a variety of methods (e.g. CZ, EFG, FZ, detached Bridgman growth). The specific background for the experiments was twofold: a) the selection of a suitable ampoule
material for the detached growth of Ge and Ge-Si alloy crystals (see papers 31a-S21-03 and 01p-K32-12) and b) the determination of the magnitude of solutocapillary convection in the FZ growth of Ge-Si
crystals (see paper 31a-S14-07).
The sessile drop method allows the simultaneous determination of both surface tension and wetting angle and was used for the investigations. The samples (pure Ge as well as Ge-Si melts) were measured on
different substrates between the melting temperature and 1090°C. Sapphire, fused silica, various surface treated versions of both, as well as glassy carbon, graphite, SiC, carbon-based aerogel, pBN, AIN,
Si;N,, and CVD diamond were used as substrates. The measurements were performed either under dynamic vacuum, under argon, or under forming gas (Ar with 2%H,). Pictures of the drops were evaluated

numerically using the Young-Laplace equation. The parameters were measured for durations up to 5 days to simulate typical growth times for the alloy crystals and to detect any changes of the parameters due
to slow reactions with the atmosphere or the substrate.

1. Sessile Drop Setup

2. Sessile Drop Evaluation

3. Long-Term Evaluation of Data

@ For Ge melts, stable contact angles >160° were found for graphite, SiC, C-aerogel, and pBN

# For all oxide- and most nitride-based substrates, contact angles decreased over time

@ For Ge,,Si, melts (x £0.14), pBN was the only substrate providing stable angles, around 165°

# Surface tension measurements for Ge resulted in g= 591-10° N/m and a temperature coefficient
of -0.08-10°N/m K, in good agreement with recent literature data

@ For Ge,,Si, (x £ 0.14), values similar to that of pure Ge were found for the temperature coefficient

# For the compositional dependence of the surface tension, 2.2:10° N/m-at%Si was determined
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4. Results: Contact Angles for Ge 5. Results: Contact Angles for Ge,,Si
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6. Results: Temperature Dependence of Surface Tension 7. Results: Concentration Dependence of Surface Tension
(absolute values shown were calculated for 1090°C from the experimental results)
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